Aims of BioMedBridges

The gap between curiosity-driven, basic research and application-driven research is a long-standing challenge in the natural sciences. Basic research generates valuable new ideas that help scientists approach problems in new ways. In the life sciences, significant additional value and insights are gained through connecting knowledge from different disciplines. The main aim of BioMedBridges is to facilitate the translation of ideas into new medical and environmental applications by removing technical stumbling blocks related to interoperability of data from a variety of disciplines and scales.

Researchers from different scientific communities often describe things in very different ways. This can result in information on the same thing - as simple as high blood sugar levels in human patients or mouse disease models - not being fully compatible, so that different sources of information cannot easily be connected. To address this, BioMedBridges builds a shared data culture in the life sciences by linking up 12 of Europe’s new biological, biomedical and environmental research infrastructures (BMS RI; Figure 1). Integrating the vast data resources in the life sciences, including data from genomics, biological and medical imaging, structural biology, mouse disease models, clinical trials, highly contagious agents and chemical biology, will enable new ways of analysing them to answer new, more complex scientific questions.

The central principle driving BioMedBridges is the development of necessary data infrastructure, including shared standards and semantic web technologies. While the work within BioMedBridges is done in the context of a specific set of “use cases” to demonstrate the power of such data integration, the project outcomes and the contribution it makes to data interoperability between the research infrastructures involved ultimately lays the foundation for the reuse, combination and analysis of data resources in many different contexts going forward, including future contexts that are not yet evident and that will only emerge with new challenges and directions of scientific inquiry.

By building these computational bridges, BioMedBridges progresses considerably beyond the state-of-the-art. It bridges data:

  • across different spatial scales: from molecules through cells and organs to humans and the environment
  • between different species: from bacteria through model organisms to humans
  • between different technologies and the heterogeneous data they generate: from the nanotechnology of sequencing through the spectroscopy of cellular and whole organism imaging to the powerful synchrotrons for structure determination
  • and across different research communities: from basic molecular biologists to clinicians and environmental researchers, who have not traditionally worked closely together.

The results of the project will lead to real and sustained improvement in the services offered by the BMS RIs to the research community. Data curation and sample description will be improved in all of them by the adoption of best practices and agreed standards. These efforts in turn will benefit society and boost the bioeconomy by speeding up the translation of knowledge from basic research to new drugs, treatments and products.